If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-32w+152=0
a = 1; b = -32; c = +152;
Δ = b2-4ac
Δ = -322-4·1·152
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{26}}{2*1}=\frac{32-4\sqrt{26}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{26}}{2*1}=\frac{32+4\sqrt{26}}{2} $
| 27x=1/9 | | 20x=35+5 | | 2(7+5y)-9y=-35 | | 16=4+3(t+1) | | 4(1+6x)-43=3(3+4x) | | 2−3x=4x+9 | | 7x−1=12x−1 | | 3x+2x+54=−(−5x+2) | | n+875=2020 | | 275–x=125 | | 2(5x-6)-4x=(39+3x) | | (y+4)÷3=2 | | 2(x)^3-5(x)^2-23x-10=0 | | 6(-10-2n)+12n=24 | | 3a-2(-3+a)=7 | | 6(x–3)=4x+10 | | 2a-(2+a)=5 | | 1/3x+2/5x=0 | | -7+4(5k+5)=173 | | 3+11=10y | | 7x+15=–3–2x | | 1/3x+2/5x=x | | 6y-2=3-4y | | n+75=250 | | 3x-4=4=(8+3x) | | 24-6y=24y+24-10y | | 45+2x=47+1.6x | | 3q/4=6+4 | | -4(2+5n)+2=106 | | 5n+23=17-2n | | x2+-8x+65=0 | | 18-12-28x=18 |